![]() |
Привіт Гість ( Вхід | Реєстрація )
![]() |
Arbalet |
![]() ![]()
Пост
#1
|
![]() Штандартенкранчер ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Група: Trusted Members Повідомлень: 2 647 З нами з: 16-August 05 Користувач №: 119 Стать: Чол Парк машин: FX-8320 + 1070Ti ![]() |
![]() 3 июня 2010 г. начался эксперимент Института медико-биологических проблем (ИМБП) РАН по долговременному пребыванию людей в изоляции от окружающего мира. Более 500 суток должен провести экипаж из шести человек в замкнутом пространстве, проводя различные научные и медицинские исследования. Этот эксперимент станет одним из важнейших этапов в ходе подготовки к марсианской экспедиции человечества — долгожданному космическому прорыву землян. ![]() Сайт проекта "Дорога к Марсу": http://mars500main.appspot.com/ Бортовой журнал экспедиции Не остались в стороне и люди творческие, а именно — писатели-фантасты, пишущие на русском языке. 12 известных и даже известнейших фантастов решили параллельно с научным поставить и литературный, мысленный эксперимент, и поддержала их в этом компания Google. Каждую неделю на этом сайте будет выкладываться очередной фрагмент романа о марсианской экспедиции человечества. Писать его фантасты будут, сменяя друг друга и излагая события так, чтобы последующий соавтор напряг все свое воображение, а повествование не утратило темп и связность. Головокружительные повороты сюжета практически гарантированы, равно как и строго научный антураж. Это будет «фантастика ближнего прицела», земляне не полетят на тысячетонных космических линкорах, но на аппаратиках-скорлупках, которыми снабдит их земная наука уже завтра. По крайней мере, так будет в начале романа... Кто будет участвовать из фантастов пофамильно? Вот список команды литпроекта «Дорога к Марсу» в алфавитном порядке. Амнуэль Павел, Веров Ярослав, Гаркушев Евгений, Громов Александр, Зорич Александр, Калугин Алексей, Колодан Дмитрий, Лукьяненко Сергей, Минаков Игорь, Первушин Антон, Романов Николай, Слюсаренко Сергей. ![]() -------------------- (Show/Hide) |
![]() ![]() |
astronom2003 |
![]()
Пост
#2
|
![]() Капитан Ukraine-Sarny ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Група: Moderators Повідомлень: 1 437 З нами з: 18-November 07 З: город Сарны,Ривненская обл. Користувач №: 651 Стать: Чол Парк машин: Куча всякого разного железа... ![]() |
Марсианская целина
![]() Pat Rawlings / NASA Разбить на Красной планете грядки, в чем преуспел главный герой фильма «Марсианин», можно и в реальности. Вода из лавовых трубок, плодородный грунт, метановые бактерии и хлорфторуглероды для повышения температуры, минибиофабрики и лишайники-экстремофилы — «Лента.ру» рассказывает о самых реалистичных технологиях растениеводства на Марсе. Несмотря на то что те потоки жидкой воды, следы которых недавно представило НАСА, слишком насыщены перхлоратами, ядовитыми для растений, марсианские лавовые трубки (подповерхностные пещеры) объемом в миллионы кубических метров, по мнению планетологов, содержат значительное количество водного льда, свободного от перхлоратов или вовсе деминерализованного. Плодородный Марс Что с «почвой»? Группа во главе с голландским экологом Вигером Вамелинком (Wieger Wamelink) купила у НАСА образцы искусственного грунта, химически идентичные марсианскому и лунном реголиту. На них, а также на земном грунте с глубины десять метров, было посеяно значительное количество растений, в том числе обычные томаты, кресс-салат и полевая горчица. Поливали их деминерализованной водой, соответствующей той, что можно получить из лунного и марсианского водного льда. Результаты оказались крайне неожиданными: многие растения, включая и три указанных вида, не только проросли, но и дали семена, причем лучше всего — на «марсианском» образце. «Лунный» грунт справился хуже всех, а вот земной занял почетное второе место — и это несмотря на умеренное содержание алюминия и перхлоратов в симуляторе марсианского грунта. Опять-таки исследователи подчеркивают: поскольку азота в марсианской атмосфере практически нет, на самой Красной планете крайне желательно внесение в почву экскрементов, содержащих нужное количество этого элемента. ![]() Горшки с «марсианским» и «лунным» грунтом Фото: PubMed / NCBI Симуляция марсианского сельского хозяйства в эксперименте выполнялась при 20°С и земной атмосфере. Группа Вамелинка полагает, что растения на Марсе будут выращиваться в закрытых стеклом (останавливающим ультрафиолет) парниках с подогревом и дополнительной ламповой подсветкой. Все это весьма далеко от того, что обещала нам некогда популярная песня: «И на Марсе будут яблони цвести». Неподъемная целина Раз есть грунт и вода, способные поддержать рост растений, встает естественный вопрос о том, нельзя ли распространить земные растения за пределы герметичных парников, куда придется нагнетать дополнительные газы, необходимые для обеспечения нормального давления. Недавнее полушутливое предложение Илона Маска зажечь над полюсами Марса два искусственных пульсирующих термоядерных солнца, которые бы растопили замороженный углекислый газ, к сожалению, вряд ли реалистично. На полярных шапках, по сегодняшним данным, менее 20 тысяч кубических километров сухого льда. Самая мощная из когда-либо созданных человеком термоядерных бомб («Кузькина мать») при взрыве испаряет меньше четверти кубического километра этого материала. Конечно, в 1960-х «Кузькину мать» взрывали, искусственно занизив ее мощность вдвое, но и без этого более 0,5 кубокилометра она не испарит. ![]() Mars Colonial Transporter в сравнении с другими тяжелыми ракетами-носителями Изображение: SpaсeX ![]() Mars Colonial Transporter в представлении художника Изображение: SpaсeX Самая мощная из проектируемых сегодня ракет просчитывается тем же Илоном Маском для проекта Mars Colonial Transporter. Однако и она не сможет доставить к Марсу больше 100 тонн грузов за раз, что примерно равно весу четырех вышеупомянутых родственниц Кузьмы. Растопка всего двух кубических километров сухого льда на одну сверхтяжелую ракету означают, что реализация плана Маска потребует до десяти тысяч рейсов (миллиона тонн бомб). Напомним, доставка тонного «Кьюриосити» на Марс обошлась в сотни миллионов долларов, и даже если SpaceX удастся снизить цену доставки в десять раз, термоядерная весна на Марсе обойдется человечеству в 100 триллионов долларов. Нет ли способа подешевле? Готовые марсиане Летом этого года на Американском конгрессе микробиологов Ребекка Микол (Rebecca Mickol) из Университета Арканзаса сообщила о забавном эксперименте: четыре чрезвычайно распространенных вида анаэробных бактерий были подвергнуты давлению в 0,006 земного, что соответствует условиям на поверхности Марса. Как оказалось, все эти организмы без спорообразования способны выносить такие изменения и не утратить свою способность к выработке метана. Ранее те же виды, включая Methanosarcina barkeri уже показали, что им не страшны и крайне резкие колебания температуры, и среды с высоким содержанием перхлоратов, а иные из земных бактерий успешно питаются этими самыми перхлоратами, ядовитыми для нас с вами. ![]() Methanosarcina barkeri Фото: Zeikus JG, Bowen VG Что важно, все эти бактерии вырабатывают метан, а Methanosarcina barkeri — еще и углекислый газ. И первый и второй — мощные парниковые газы, способные резко снизить потерю тепла на поверхности планеты. Увы, это не значит, что нам достаточно занести на Красную планету M. barkeri и умиротворенно наблюдать за тем, как она ее терраформирует. Дело в том, что большинство таких анаэробов требует водорода, которого там вряд ли много. Наконец, на Марсе уже обнаружены области, где подозрительно много углекислого газа (всемеро больше нормы) и иногда появляется метан. Ряд ученых винит в этом именно возможных марсианских аналогов M. barkeri. Если они все еще не террафомировали Марс без нашей помощи, значит, им попросту не хватает питательных веществ — например, того же водорода. В теории можно было бы попробовать создать методами генной инженерии бактерию, питающуюся перхлоратами и такую же устойчивую к марсианским температурам и давлениям, как M. barkeri, но на практике говорить о реалистичном сценарии микробного парникового эффекта, который сделал бы Марс таким же теплым, как Земля, пока рано. Большая химия И тем не менее ничего сверхъестественного в том, чтобы сделать открытую марсианскую поверхность пригодной для земных растений, нет. В настоящий момент парниковый эффект нагревает Марс (в сравнении с безатмосферным вариантом) лишь на пять кельвинов, в то время как в Солнечной системе есть примеры планет, получающих от парниковых газов нагрев в сотни кельвинов. Правда, пока таких газов на Марсе мало: даже растопив весь сухой лед на полюсах, парниковый эффект можно максимум удвоить, что не даст радикального роста планетарной температуры. Однако выход есть. Ряд газов не пропускают инфракрасное излучение в гораздо более широким диапазоне, чем углекислый газ или метан. Низшие хлорфторуглероды сильно блокируют его волны длиной от 7,8 до 15,3 микрометров, из-за чего парниковый эффект от них до 30 тысяч раз сильнее, чем от такого же количества углекислого газа. Сколько конкретно хлорфторуглеродов будет нужно для нагрева до таяния полюсов — сложный вопрос, зависящий от того, сколько именно замерзшего углекислого газа лежит под поверхностью Красной планеты. Поскольку исследование ее глубин еще не начиналось, количественные оценки объемов льда резко разнятся. ![]() Полярный лед на Марсе Фото: NASA По наиболее оптимистичным расчетам, даже 40 миллионов тонн этих веществ хватит для того, чтобы растопить не только углекислый газ полярных шапок, но и ту часть сухого льда, что содержится в поверхности остальных районов планеты. Таяние всего этого массива увеличит плотность атмосферы до 0,3 от земной, что в несколько раз выше предела Армстронга — точки, при которой слюна начинает закипать на языке при 37°С. При этом будет достигнута не только возможность ходить по планете без скафандра, но и парниковый эффект, достаточный для того, чтобы поверхность Марса в тропиках и на экваторе ночью не подвергалась сильным морозам. Но и 40 миллионов тонн — это слишком много, чтобы их можно было доставить с Земли. Это всего в 60 раз больше среднего уровня производства низших хлорфторуглеродов на Земле, где их до 1992 года использовали при производстве аэрозольных баллончиков. Организовать на Марсе высокороботизированное химическое производство не так сложно, как кажется, — удельный вес фтора и его соединений в местном грунте в полтора раза больше, чем на Земле. ![]() Проект марсианского парника Изображение: NASA И все равно речь идет о создании там большой химической индустрии, которой придется десятилетиями работать в непрерывном режиме. Даже если начать ее работу прямо сейчас, углекислый газ на Марсе растает полностью лишь к 2075 году. Но и после этого заводы не стоит останавливать: чтобы растопить весь водный лед на планете, понадобится, по разным оценкам, как минимум столько же времени. Теоретически уже с момента таяния сухого льда Марс станет пригодным для некоторых земных растений. Еще в 1970-е было показано, что отдельные водоросли нормально себя чувствуют в чистом углекислом газе, безо всякого кислорода. Сходные качества имеются и у цианобактерий. В принципе, после достижения плюсовых температур такие организмы могут начать производство кислорода в промышленных масштабах. Но чтобы эта схема работала, потребуется огромное количество времени — быть может, до 100 000 лет. Что же, нам так и не увидеть планету зеленой? Бросить бутылку Кое-что можно сделать уже сейчас. Немецкое аэрокосмическое агентство в 2012 году обнаружило, что арктический лишайник ксантория элегантная вполне может фотосинтезировать в условиях низких широт Марса (от +20 до -50°С). В ходе эксперимента, длившегося 34 дня, лишайник не только сохранил жизнеспособность, но и демонстрировал фотосинтез в те моменты, когда симулируемые марсианские сутки обеспечивали ему температуру выше нуля. Похоже, что несмотря на давление в полторы сотни раз меньше земного, принципиально чуждую атмосферу, радиацию и даже ультрафиолет, некоторые земные фотосинтетические организмы поблизости от жидкой воды вполне могут существовать на Марсе уже сейчас. ![]() Лишайник P. chlorophanum на почве, аналогичной марсианской Фото: German Aerospace Center's Institute of Planetary Research Такую возможность надо проверить. Именно поэтому в НАСА в настоящее время прорабатывается инициатива Mars Ecopoiesis Test Bed. В ее рамках на четвертую планету Солнечной системы планируют отправить контейнер размером с небольшую бутылку, оснащенный прозрачной крышкой. Спускаемому аппарату потребуется вкрутить такую «бутылку» с открытым дном на несколько сантиметров в грунт в тех районах, где наблюдаются периодические потоки соленой воды, и дать местной «почве» попасть внутрь объекта. По мере того как местность рядом с бутылкой будет проходить через точку замерзания воды, дно устройства пропустит жидкую воду внутрь, позволяя находящимся внутри организмам использовать ее. В экспериментальную миниканистру поместят экстремофильные водоросли и цианобактерии, которым дадут возможность на месте доказать свою способность к фотосинтезу под ультрафиолетом и прочими марсианскими прелестями. На следующем этапе этой же программы НАСА планирует создать более крупные герметичные строения, накрытые сверху, но свободно получающие снизу воду и грунт для своих фотосинтетических организмов. В таких закрытых минибиосферах можно будет нарабатывать кислород, который в перспективе пригодится астронавтам, приземляющимся на Марс. Кислородные биофабрики теоретически могут существенно облегчить жизнь прибывающим астронавтам, избавив их от необходимости везти с собой запасы кислорода с Земли. ![]() Контейнер Mars Ecopoiesis Test Bed Изображение: Techshot, Inc -------------------- |
![]() ![]() |
![]() |
Lo-Fi Версія | Поточний час: 2nd August 2025 - 15:42 |