Привіт Гість ( Вхід | Реєстрація )

> Human Proteonome Folding, Phase 2, рассчет структуры белков в человеческом теле
Rilian
Jun 11 2008, 15:33
Пост #1


interstellar
**********

Група: Team member
Повідомлень: 17 163
З нами з: 22-February 06
З: Торонто
Користувач №: 184
Стать: НеСкажу
Free-DC_CPID
Парк машин:
ноут и кусок сервера



IPB Image

Human Proteome Folding Project
Phase 2


Официальные результаты проекта
Активные эксперименты
Human Microbiome Project - официальный сайт

http://homepages.nyu.edu/~rb133/wcg/thread_2010_03_10.html

Как присоединиться читайте в главном топике World Community Grid thumbsup.gif

Proteins are essential to living beings. Just about everything in the human body involves or is made out of proteins.

What are proteins?
Proteins are large molecules that are made of long chains of smaller molecules called amino acids. While there are only 20 different kinds of amino acids that make up all proteins, sometimes hundreds of them make up a single protein.

Adding to the complexity, proteins typically do not stay as long chains. As soon as the chain of amino acids is built, the chain folds and tangles up into a more compact and particular shape that lets it conduct specific and necessary functions within the human body.

Proteins fold because the different amino acids like to stick to each other following certain rules. Imagine that amino acids are pop-beads of 20 different colors. The pop-beads are sticky, but sticky in such a way that only certain combinations of colors can stick together. This makes the amino acid chains fold in a particular way that creates proteins that are useful to the human body. Human cells have mechanisms to help the proteins fold properly and, equally important, mechanisms to get rid of improperly folded proteins.

How do proteins relate to human genes?
The collection of all of the human genes is known as "the human genome." Depending on how the genes are counted, there are over 30,000 genes in the human genome. Each gene, which is a section of a long chain known as DNA, dictates how to build the chain of amino acids for one of the 30,000 proteins. In recent years, scientists were able to map the sequence for each human gene. This means that we now know the sequence of amino acids in all of the human proteins. Thus, the human genome is directly related to the "human proteome," the collection of all human proteins.

The protein mystery
While researchers have learned a great deal about the human proteome, the functions of most of the proteins remain a mystery. The genes do not reveal exactly how the proteins will fold into their final shape, which is critical because that determines what a protein can do and what other proteins it can connect to or interact with.

Proteins are like puzzle pieces. For example, muscle proteins connect to each other to form a muscle fiber. They join together in a specific manner because of their shape, as well as other factors relating to the shape.

Everything that goes on in cells and in the body is very specifically controlled by the shape of the proteins that do or do not let proteins interlock with other proteins. For example, the proteins of a virus or bacteria may have particular shapes that enable it to break through the cell membrane, allowing it to infect the cell.

The Human Proteome Folding Project
Знания структуры белков позволит ученым понять как белки выполняют свои биологические функции, а также как болезни блокируют белки от выполнения необходимых функций для поддержания здоровых клеток

The Human Proteome Folding Project will combine the power of millions of computers in a grid to help scientists understand how human proteins fold. The work to be done in this monumental task is shared across this grid, so that results can be achieved far sooner than would be possible with conventional supercomputers. With a greater understanding of protein structure, scientists can learn how diseases work and ultimately find cures for them.

When your grid agent is running, it is folding an amino acid chain in various ways and evaluating how well each folding follows the specific rules of how specific amino acids stick together or not. As computers try millions of ways to fold the chains, they attempt to fold the protein in the same way that it actually folds in the human body. The best shapes identified for each protein are returned to the scientists for further study.

IPB Image

-----

Оказывается тут тоже юзается розетта huh1.gif
(Show/Hide)

IPB Image


График проекта
IPB Image

Це повідомлення відредагував Rilian: Feb 4 2011, 00:23
User is offlineProfile CardPM
Go to the top of the page
+Quote Post
 
Reply to this topicStart new topic
Відповідей
Rilian
Sep 27 2011, 11:01
Пост #2


interstellar
**********

Група: Team member
Повідомлень: 17 163
З нами з: 22-February 06
З: Торонто
Користувач №: 184
Стать: НеСкажу
Free-DC_CPID
Парк машин:
ноут и кусок сервера




Summary
The Human Proteome Folding project researchers have published a paper in the journal Genome Research, which announces the availability of their data base of predicted protein structures, their validation methods and how this augments other information about these proteins, thus helping to solve a critical problem for biologists.

QUOTE
Проект HPF опубликовал статью в Genome Research. Анонсируют доступность их базы данных предсказанных белковых структур, их методы валидации, как новые знания расширяют уже известные знания о данных белках, позволяя решать критические проблемы для биологов.


Lay Person Abstract:

Lack of information about the structure of proteins is a critical problem for biologists and severely limits their ability to do further research and conduct experiments to understand the roles of proteins in disease processes. The researchers for the Human Proteome Projects have published a paper in Genome Research entitled "The proteome folding project: proteome-scale prediction of structure and function." The paper describes how they were able to use the computation results from World Community Grid to predict protein structure and protein function. Protein structure determines the function of proteins in life processes. Knowing the structure of these proteins helps scientists studying biological and medical processes and can, for example, hasten the process of discovering treatments for diseases. The human genome as well as 93 other genomes of importance to humans were processed. The paper describes the methods used to validate the accuracy of their predictions, which are now publicly available in a data base for all scientists to use.

Technical Abstract:

The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions.

Access to Paper:

To view the paper, please click here.
link.gif


--------------------
(Show/Hide)


IPB Image

IPB Image

IPB Image
IPB Image

загальна статистика: BOINCstats * FreeDC команда: BOINC команда Ukraine

IPB Image

IPB Image
User is offlineProfile CardPM
Go to the top of the page
+Quote Post

Повідомлення у даній Темі
Rilian   Human Proteonome Folding, Phase 2   Jun 11 2008, 15:33
nikelong   Росетта следит за тобой! ЗЫ: ты когда себе та...   Jun 11 2008, 16:37
(_KoDAk_)   :yes:   Jun 11 2008, 23:33
Rilian   надо бы перевести шапку... Кратко: проект с помощ...   Jan 2 2009, 16:30
Rilian   Насчитал 100 процессорных дней в проекте Это сост...   Jan 4 2009, 19:27
Rilian   Richard Bonneau, head scientist of the Human Prote...   Jan 6 2009, 04:44
Rilian   Рассчитал 500 протеинов за 142 процессорных дня   Jan 11 2009, 04:16
Rilian   Объявляется мини-соревнование - кто быстрее подсчи...   Jan 13 2009, 21:16
Rilian   Объявляется мини-соревнование - кто быстрее подсч...   Mar 6 2009, 22:07
nikelong   http://www.yeastrc.org/pdr/pages/search/ad...dSear...   Feb 13 2009, 15:59
cosmo_vk   кстати не у кого не возникало проблем с расчетом з...   Mar 7 2009, 08:04
Rilian   Не, но у меня на висте проблемы именно с HPFP2...   Mar 7 2009, 15:23
Rilian   Привет, Прошло уже некоторое время с тех пор ка...   Mar 25 2009, 02:10
cosmo_vk   А все-таки тормозятся вычисления, теперь уже такой...   Apr 1 2009, 18:20
Rilian   у меня на 2-гигагерцовых ксеонах бывает считает и ...   Apr 1 2009, 20:50
cosmo_vk   не-е у меня считает в районе 3-4 часов. Если больш...   Apr 2 2009, 06:49
Rilian   А... ну да, в HPFP2 оч редко такое бывает.. Может ...   Apr 2 2009, 11:31
Rilian   Patrick Winters продолжает радовать нас апдейтами ...   Apr 8 2009, 20:54
vitalidze1   cosmo_vk, В мене іноді такі лажі на компах вискан...   May 28 2009, 16:09
cosmo_vk   не-е на рисе у меня все нормально. Глюк с этим пр...   May 29 2009, 16:41
4 Сторінки V  1 2 3 > » 


Reply to this topicStart new topic
1 Користувачів переглядають дану тему (1 Гостей і 0 Прихованих Користувачів)
0 Користувачів:

 



- Lo-Fi Версія Поточний час: 14th December 2025 - 04:44